Mobile network insecurities and what we can learn from them

Introduction: Mobile networks are complex

Mobile network users are exposed to three attack categories

Attack type	User risk
Tracking	 User's location is disclosed to the adversary
Intercept	 Contents of calls and short messages are accessible to third parties
Impersonation	 Attacker performs actions on user's behalf, e.g. use premium services, drop calls

- SIM card
- Interconnect

Attacks on the radio interface

Active Intercept

- Passive Intercept
- SIM card
- Interconnect

GSM problem I: subscribers authenticate to the network, but the network is not authenticated

Primary Threat Model: Fraud

Protocol design focused on protecting networks from providing service to illegitimate users.

Complication: Roaming

Mobile Phones should also work flawlessly in networks when users travel abroad (roaming).

Vulnerability: Rogue BTS

Attackers can offer mobile network service without encryption.

Fake base stations can offer rogue service

Attack setup

Active Intercept

Passive Intercept

- SIM card
- Interconnect

GSM problem II: Cryptographic attack surface

Some GSM frame contents are fully **know or partially predictable**. This enables **know-plaintext attacks** on the key material

Vulnerable GSM frames	Attack:
 NULL-padding in empty or partially empty frames SI5 and SI6-messages Empty ACK messages after Assignment complete Alerting Cipher mode complete 	 Stream cipher Key length: 64bit (effectively 54bit in Comp128) Time-memory-trade-
• Etc	off

Karsten Nohl, Chris Paget (2009): GSM– SRSLY? – 26th Chaos Communication Congress <u>https://media.ccc.de/v/26c3-3654-en-gsm_srsly</u>

Interconnect

Mobile networks combine many technologies and attack surfaces

Operators can send short message commands to the SIM cards

Configuration updates e.g. preferred roaming networks

Java applications & commands e.g. NFC & payment

File management

e.g. App installation

 ✓ Messages processed directly by SIM card

 ✓ Card can respond via SMS

 ✓ No user notification

SIM problem I: OTA error handling underspecified

Binary SMS communication

Karsten Nohl (2013): Rooting SIM cards – Blackhat USA / OHM 2013 https://srlabs.de/rooting-sim-cards/

- Radio Interface
- SIM card

Mobile networks combine many technologies and attack surfaces

Interconnect problem: Telcos do not authenticate each other but leak private user data

Tobias Engel (2008): Locating Mobile Phones using SS7 – 25. Chaos Communication Congress <u>https://media.ccc.de/v/25c3-2997-en-locating_mobile_phones_using_ss7</u>

Interconnect problem: Telcos do not authenticate each other but leak private user data

Tobias Engel (2008): Locating Mobile Phones using SS7 – 25. Chaos Communication Congresshttps://media.ccc.de/v/25c3-2997-en-locating_mobile_phones_using_ss7Philippe Langlois (2010): Getting in the SS7 Kingdom – Hackito ergo sumhttp://www.hackitoergosum.org/2010/HES2010-planglois-Attacking-SS7.pdf

Further Interconnect research

Interconnect attacks allow for more than just location **tracking**. Encryption key leakage and call forwarding can be exploited to facilitate **Intercept** attacks. **Fraudulent** subscriber data manipulation can be exploited in numerous ways.

Kasten Nohl & team (2014):

Mobile self-defense. 31st Chaos Communication Congress

https://media.ccc.de/v/31c3 - 6122 - en - saal 1 -201412271830 - mobile self-defense - karsten nohl **Tobias Engel (2014):** *Locate. Track. Manipulate.* 31st Chaos Communication Congress

https://media.ccc.de/v/31c3 - 6249 - en - saal 1 -201412271715 - ss7 locate track manipulate tobias engel Lessons learned:

Attack surface	Advice	
Authen- tication	 Implement a bilateral end-to-end authentication scheme. Do not rely on "walled gardens" or Firewall zones. 	
Specification	Specify protocols and behaviors thoroughly, especially for corner cases and error conditions.	
Obscurity	Rely on well-hung cryptographic algorithms and abolish attack surface, even it if is only theoretical.	